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NUMERICAL SOLUTIONS FOR SOLUTE TRANSPORT 
IN UNCONFINED AQUIFERS 

v. GUVANASEN? AND R. E. VOLKERS 
Department of Civil and Systems Engineering, James Cook University of North Queensland, Q. 481 1,  Australia 

SUMMARY 

Two numerical methods for solving the problem of solute transport in unsteady flow in unconfined 
aquifers are studied. They are the method of characteristics (MOC) based on the finite difference 
method (FDM), and the finite element method (FEM). The FEM is further subdivided into four 
schemes: moving mesh, pseudo-Lagrangian (FEM1); stationary mesh, pseudo-Lagrangian (FEM2); 
pseudo saturated-unsaturated, Eulerian (FEM3); and non-stationary element, Eulerian (FEM4). 

Experiments on a one-dimensional flow case are performed to illustrate the schemes and to 
determine the effect of discretization on accuracy. In two-dimensional flow the above methods are 
compared with experimental results from a sand box model. Results indicate that for a similar degree 
of accuracy, the FEM requires less computational effort than the MOC. Among the four FEM schemes, 
FEM4 appears to be most attractive as it is the most efficient and most convenient to apply. 

KEY WORDS Aquifers Convection Dispersion Finite Difference Finite Element Mass Transport Numerical 
Solutions Unconfined Flow 

INTRODUCTION 

Problems of flow and solute transport in unconfined aquifers (see Figure 1) are often solved 
by the saturated-unsaturated approach.' Owing to the high degree of non-linearity in the 
flow equation, computation is usually very expensive and for problems where the transport in 
the unsaturated zone is insignificant, some analysts have considered only the saturated 

The flow equation then is linear and can be cheaply solved but the major drawback 
is the necessity to deal with the moving free surface or the non-stationary saturated domain 
(see Figure 1). 

Numerous numerical solutions for flow problems with a moving free surface have been 
given by various ~ o r k e r s , ~ , ~  some of which have been studied and compared recently by the 
authors.6 Numerical solutions for transport problems with a moving free surface, on the 
other hand, have not been examined in detail. The major objective of this study is therefore 
to compare some of the available methods so that an appropriate selection may be made. 
The solution methods are drawn from both the finite difference method (FDM) and the finite 
element method (FEM). 

In solving the transport equation (also referred to as the convective-dispersion equation or 
the hydrodynamic dispersion equation), numerical solutions can produce severe numerical 
errors especially when convective transport is dominant and a Eulerian co-ordinate system is 
used. These errors can take the form of numerical dispersion which produces spurious 
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Figure 1. The solution domain in the unconfined aquifer 

oscillation of the numerical solution about the true solution; in addition numerical diffusion 
can produce smearing of the front instead of a well defined sharp demarcation between the 
uncontaminated and contaminated water. 

In an attempt to alleviate these problems many FDMs have been presented. The method 
of characteristics (MOC) which eliminates the convective terms and reduces the transport 
equation to a conduction equation was proposed by Garder et d7 and later refined by 
Reddell and Sunada.' Many other techniques have been employed such as selective one- 
sided difference approximations to the convective termsg and the flux corrected approach." 

In this study, MOC is selected because of its ability to deal with convection dominant 
problems and because, without the convective terms the Neumann type boundary conditions 
are relatively simple to incorporate at the curved moving free surface. 

Numerical problems arise with the finite element solutions as they do with the FDM; 
however, FEM proves to be more stable than most FDM." In an attempt to minimize the 
problem of numerical smearing and dispersion, some workers have applied asymmetric 
weighting (upwind) functions via the weighted residual method.'* Alternatively, Hermitian 
basis functions have also been employed. 

The upwind scheme, while reducing numerical dispersion, increases numerical diffusion, 
and the Hermitian elements improve accuracy at the expense of increased computational 
time and storage. 

An alternative is to use a Lagrangian approach which has been applied successfully by 
several workers including Sat0 and T h ~ m s o n . ' ~  This approach is well suited to the problem 
of a non-stationary free surface because of the manner in which the convection is introduced. 

One Lagrangian approach is to allow for convection by moving the nodal points of the 
finite element mesh with the average pore velocity of the fluid in the vicinity of each node 
but difficulty may be encountered for complex flow problems in obtaining a well graded 
mesh. This difficulty can be overcome by an alternative scheme in which the convection is 
calculated by a backward-in-time interpolation scheme. 

Two Eulerian schemes applicable to the moving free surface problems are also examined: 
the pseudo saturated-unsaturated approach and the non-stationary element a p p r ~ a c h . ~ . ' ~  

The accuracy and efficiency of these methods are determined by results from numerical 
experiments in a one-dimensional problem for which an analytical solution is available and in 
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two-dimensional problems for which some experimental data are available. Because there 
are many factors such as coding efficiency and program structure which must be taken into 
consideration when comparing various computer programs, results of run times of various 
schemes presented in this paper should be regarded as a guideline rather than an exact 
measurement. 

MATHEMATICAL BACKGROUND 

Flow equation 

porous media can be tensorially expressed as'' 
From the use of Darcy's law and the continuity condition, incompressible flow in rigid 

a ah 
-K--=O i = 1 , 2 , 3  axi "axi ' 

where Kii is the hydraulic conductivity tensor, h the piezometric head, and xi the Cartesian 
co-ordinates, xg being vertically upwards. 

Boundary conditions are normally of the types below: 
(i) Constant head boundary; 

h = H c  

where H ,  is the head on the boundary. 
(ii) Prescribed flux boundary: 

where qn is the flux normal to the boundary (positive inwards), and li the component of unit 
outward normal to the boundary. 

(iii) Seepage surface: 

(iv) Free surface' 
h = x g  (4) 

h = H = x ,  ( 5 4  
and 

where 8, is the effective porosity" at the free surface, P ,  the infiltration rate, H the elevation 
of the free surface above reference datum. and t the time. 

Transport equation (hydrodynamic dispersion equation) 

The hydrodynamic dispersion equation for incompressible flow is given by Bear'' as 

where c is the solute concentration, Dij the hydrodynamic dispersion coefficient tensor, and 
4 the local pore velocity in the ith direction given by 

Kii ah u. = 
1 eT axi 

where tlT is the Darcy porosity. 
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Boundary conditions are normally of the following types: 
(i) Prescribed concentration: 

c = Cb 

where cb is the concentration on the boundary. 
(ii) Prescribed solute flux: 

(7) 

where terms with bars refer to variables outside the boundary of the saturated region. 
This equation is reduced to 

for the case of an impermeable boundary. 
(iii) Free ~urface".'~ 

a C  aH 
i3ic - text) = -Dli - li for Po = 0, - 2 0, einit 8F-l 

0T at ax, at 
__- 

and 
ac aH -D;j-li=O for -<O 
axj at 

where co is the concentration of infiltrating solute, text the concentration of immobile 
solute in the unsaturated zone above the free surface, Oinit the portion of pore space 
occupied by immobile solute in the unsaturated zone. Equations 9(a) and 9(b), in 
which terms on the left hand side represent convective flux per unit free surface area, 
are derived from the continuity condition at the free surface. Detailed derivations are 
given in References 3 and 14. 

NUMERICAL SOLUTIONS 

Various types of numerical solution to the flow equation have been given and discussed 
elsewhere6 and are therefore not repeated in this paper. Five numerical solutions for the 
transport or hydrodynamic dispersion equation are investigated including one finite- 
difference scheme based on the method of characteristics (MOC), and four finite-element 
( E M )  schemes based on both Eulerian and Lagrangian formulations. For simplicity the 
following presentation is intended for two-dimensional problems although extension to 
three-dimensional cases is straightforward and does not involve any new concept. 

Method of characteristics (MOC) 

and Sunada8 and are only briefly presented here. 
The details of this type of numerical model have been given by Garder et aL7 and Reddell 

Solutions to equation (6) may be obtained by solving the following set of simultaneous 
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differential equations. 

d xi 
dt 
-- - ui 

The numerical procedure involves both a stationary grid and a set of moving points. The 
stationary grid is a conventional finite-difference grid and is normally the one employed for 
the flow equation solution. 

The moving points are used to solve numerically equations (l0a) and (lob). Each point 
represents one characteristic curve, and values of x, z,  c are obtained as functions of t for 
each characteristic. 

Each of the moving points is assigned a concentration which varies with time. At each time 
interval the moving points are relocated using a simple finite-difference form given by 

x:bAt  = x f n +  At (11) 

where xhD is the co-ordinate of the pth moving point, u," the velocity of the pth moving point, 
and A t  the size of timestep. Each cell (see Figure 2) in the grid system is assigned a 
concentration equal to the average of the concentration of the moving points located inside 
the cell at time t + At. The concentration of the cell and each moving point inside the cell is 
then modified for dispersion by solving equation (lob) using an explicit-in-time, centred-in- 
space finite-difference approximation given by: 

in which c ~ , ~  represents concentration at node (I ,  J), superscripts represent the time level, and 
A, represent the spatial finite-difference approximation of a&. 

The treatment of the free surface boundary condition is given in G ~ v a n s e n ' ~  and details of 
computational procedure are given by Reddell and Sunada.* 

An implicit scheme for equation (12) can also be formulated to remove the stability 
constraint associated with the explicit formulation. For problems in which dispersion coeffi- 
cients are small, i.e. with sharp fronts, the explicit scheme is much more economical to 
employ than the implicit one. 

i -1, 

i , j+l  

j i + l , j  

-eel 1 i , j  

i t  j-1 

Figure 2. Stationary grid arrangement and a typ- 
ical interior cell, MOC 
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Finite element method (FEM) 

Let the solution be approximated in the form 

c = 2 = cz(t)Nz(xi), I = 1,2, . . . , no. of connected nodes (13) 

where repeated upper-case indices also indicate summation, and Nz is the interpolating 
function. 

Applying the weighted residual method to equation (6) one obtains 

where W, is the weighting function and A the area over which the integration takes place. 
Using Green's theorem and equation (13), equation (14) becomes 

which yields the following system of simultaneous equations 

[ M ] k )  + [STKC} + {F}  = 0 

where 

M I J  = c I wINJ dA 
e A  

in which Ce represents summation of elemental contributions and S is the boundary surface 
over which integration takes place. If Wr=NI in the above equation, the approach 
corresponds to the Galerkin technique. 

Equation (16) is recast in the form 

{c}t+Af -___ IM]'ic)') +A[ST~+Af{c)'+At + (1 - A)[STy{c)L +A{F)'+At + (1 - h){F)' = 0 
At 

which is rearranged to give 

(5. h[ST]'+A'){c}t+A' - ( F - ( l  -h)[ST]At){c)l + A{F}'+*' +(l- h){FP = 0 (17) 

where A is the time-stepping weighting factor. 

Pseudo-Lagrangian methods 

In the pseudo-Lagrangian methods, the calculations are divided 
convection and the dispersion. The convective part in equation (6) 
following schemes: 

(i) node moving with the fluid (FEM1) 
(ii) backward interpolation (FEM2). 

into two parts: the 
is introduced by the 
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Figure 3.  Typical moving nodes, FEMl 

FEMl (Lagrangian approach with moving mesh). In the first scheme the co-ordinates of 
each node are relocated simply by 

At (18) X:+At = U:+At 

The scheme is diagrammatically shown in Figure 3 in which a typical node at the free surface 
is also shown. 

A rising free surface coalesces the initial moisture content in the unsaturated zone thus 
forming a saturated front. In the case of 6,, the effective porosity at the free surface, being 
smaller than &, the Darcy porosity within the saturated zone, the tracer front will lag behind 
the saturated front. This phenomenon has been observed to be true in sandbox experi- 
men t~ . " '~  According to the boundary condition (9) which implies instantaneous mixing at the 
free surface between resident fluid mixture and the incoming moisture, the mixing is realized 
by moving the nodes, which had been moved by the local velocity in the saturated flow, 
vertically to the free surface at the end of the timestep. The boundary condition is then 
applied when the dispersion part is solved. 

The dispersion part is approximated by the non-linear heat conduction equation in 
Eulerian space 

ac a ac 
D;, - -=- 

at axi axj 

This equation is solved using equation (17) with all 4 components set to zero. An explicit 
finite difference approximation is used in this case ( h  = 0). This method eliminates numerical 
dispersion and produces only small numerical diffusion provided the movement of nodes is 
such that a well formed and appropriately graded mesh can be maintained. If the flow 
pattern is such that an overly distorted mesh results, rezoning must be carried out. 

€EM2 (Lagrangian approach with stationary mesh). In the second scheme, as an extreme 
measure against the distortion of the mesh, a rigid mesh network is employed. However, 
nodal points at the free surface are allowed to move vertically with the free surface (see 
Figure 4). The convective part is introduced by retracing each node along its instantaneous 
pathline to a fictitious point of which co-ordinates (xi-"') are determined by 

A concentration value at that point is then evaluated by interpolation. The convection is 
accomplished by transferring the concentration value from the fictitious point to the nodal 
point. Readers are referred to References 14 and 20 for more details. 

At the free surface, convection is treated in a way similar to that in FEMl. Each node at 
the free surface is retraced in the x-direction by equation (20) and vertically moved to  the 
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Figure 4. Typical FEM2 nodes 

free surface at time t - At. The dispersion part is then solved in a manner identical to that of 
FEM1. 

Eulerian methods 

FEM3 (Eulerian approach with pseudo saturated-unsaturated domain. The most rigorous 
approach to the flow problem is to consider both saturated and unsaturated zones thus 
eliminating the free surface. In practice, however, if the saturated domain is much more 
significant than the unsaturated domain, a solution to the flow problem is normally sought 
through the saturated approach because of the significant difference in computational effort 
involved. The savings in computational effort are twofold. The permeability is independent 
of saturation anddhe flow equation is linear. Secondly, fine discretization in the neighbour- 
hood of the saturated front (free surface) is not essential. 

In this scheme the concept of the moving boundary is modified in the solution of the 
hydrodynamic dispersion equation. The unsaturated zone is also included in the domain of 
interest so that the moving free surface is eliminated. Because the solution to the flow 
equation is sought through the saturated flow .theory, it is more convenient to employ two 
meshes (one for the flow and another for the transport equation) than to employ a single 
mesh with the free surface condition enforced by the Lagrangian multiplier method. Once 
the flow solution is obtained, the velocity distribution is mapped onto the transport mesh. 

Velocity above the free surface is taken as zero everywhere except in the region under 
recharge sources where the vertical component is taken to be -Po/&. A typical domain is 
shown in Figure 5 in which boundary conditions at the ground surface are also displayed. 
The solution of the transport equation is obtained by solving equation (17) with 1~ h s 1. 

FEM4 (Eulerian approach with non-stationary mesh). In this scheme the domain of 
interest is confined to the saturated zone. A typical discretization is shown diagrammatically 
in Figure 6. The discretization at time t +At is superimposed on the one at time t. In this case 
the discretization is allowed to expand or contract to accommodate the non-stationary 
saturated domain. For a situation where there is no lateral movement of the saturated zone 
such as that in Figure 6, tracking of the mesh network is confined to the vertical direction 
only. 

The process of time marching in this scheme is quite efficient because interpolation between 
timesteps of concentration at new node locations is not required. 

The transport equation is transformed by the following t r an~fo rma t ion~ ,~~  

ax. 
at 

ti =xi  ---! 6t = xi -wi 6t 
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Figure 5. Pseudo saturated-unsaturated domain 

with which equation (6) is rewritten as:16 

ac ac a ac -+ ( 4  - Wi) - = - D!. - 
at a& agi '' at, 

where wi is the relative velocity between the Cartesian reference frame and the curvilinear 
reference frame ti, and 6t the time elapsed from time t .  

The relative velocity wi is approximated by Ad,/At where Adi is the movement of the 
centroid of each element between time t and t + A t .  

Equation (21) is solved using equation (17) by replacing ui with ui - wi and xi with &, 
respectively, and by setting h =i. G u ~ a n a s e n ' ~  and Guvanasen and Volker3 give more 
details. 

Old mesh - t 
New mesh ------ t+At 

Figure 6. Non-stationary mesh in the saturated domain 
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RESULTS AND DISCUSSION 

Numerical experiments for one-dimensional flow 

In order to obtain a preliminary assessment of relative accuracies of the methods some 
numerical experiments are performed on a one-dimensional model and the results from the 
different methods are compared with a known analytical solution. Parameters employed in 
the comparison are the Peclet number and Courant number which are defined below: 

Peclet number 
Courant number 

Pe = u Ax/D 
Cr = u AtlAx 

where Ax is the mesh size, u the velocity, D the coefficient of dispersion, and At the 
timestep. 

Numerical models are subjected to the following initial and boundary conditions: 

c=O at t=O 
c = c g  x = o  

d C  -=o x = B  
dX 

The concentration profile, before the downstream boundary effect is felt, is given by:’7 

(22) 
C 
- (x, t) = &erfc[(x - ~t)/(4Dt)l’~]+exp (ux/D)[erfc (x + ~t) / (4Dt)”~])  
co 

where erfc is the complementary error function. 

MOC. Experiments on one-dimensional MOC have been carried out by Garder et aL7 and 
Reddell and Sunada.8 Reddell and Sunada’ experimented with Cr = 0.1 to 1.0, Pe = 2 to 20, 
and found that the error for MOC behaved strangely and did not seem necessarily to get 
smaller with a smaller grid size. They concluded that it was due to the method used for 
calculating the average grid concentration and the relative positions of the moving point 
inside the grid. Since the most practical method of averaging concentration at a grid point is 
to use the simple arithmetic mean of concentration inside the cell, the only way of reaching 
convergence is through increasing the number of moving points. The lower limits of the 
number of points were reported by Garder et aL7 and Reddell and Sunadas to be two and 
four, respectively. In the present study, at least four points per grid were employed. 

From similar experiments for the work presented here with Cr varying from 0.25 to 1 and 
Pe from 10 to 100, it is found that Cr does not significantly affect the solution accuracy; 
however, for cases with large Pe the method suffers from numerical diffusion as shown in 
Figure 7 .  

FEMl. For uniform flow, Cr plays no important role since the mesh is not deformed. In 
non-uniform flow, Cr should be kept below unity so as to minimize truncation error in nodal 
relocation. 

The resultant heat equation is solved by an explicit scheme. It is found that the lumped 
mass matrixI8 ( M  in equation (17)) gives better numerical stability than does the consistent 
one.18 For a uniform mesh, the numerical stability can be derived by the use of the von 
Neumann’s method to give: 

D At/Ax2<&, consistent mass matrix; and 
D At/Ax2<$, lumped mass matrix. 
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Figure 7. Comparison of analytical and MOC concentration profiles with vary- 
ing Pe 

Therefore unless D is abnormally large, an explicit scheme with lumped mass matrix may be 
economically employed. 

Figure 8 shows results from cases with varying Pe. It is obvious that spurious oscillation is 
absent. For large Pe, however, steep concentration gradients can no longer be represented by 
discrete nodes and flatter gradients result due to numerical diffusion. 

FEh42. Because the solution procedure for the heat equation is identical to that of FEM1, 
the lumped mass matrix is also employed in this scheme. It is evident from Figure 9 that the 
quality of the solution depends largely on the value of Pe. Numerical diffusion becomes more 
obvious as Pe increases. The impact of Cr is less apparent as shown in Figure 9. A small Cr 
introduces more numerical dissipation due to the larger number of interpolations carried out. 
In general Cr lies between 0 and 1, and Pe should be used as a criterion. 

Analytical s o l u t i o n  

Pe 

1000 

i n  
1.0 - 100 1.0 

c / c ,  

0.5 

0 O i  
I 

2 4 6 8 10 12 
r(m) 

Figure 8. Comparison of analytical and FEMl concentration profiles with 
varying Pe 
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ly t i ca l  

6 1 2  18 24 12 18 24 

Figure 9. Comparison of analytical and FEM2 concentration profiles with 
varying Pe and Cr 

FEM3. Experiments performed on the Eulerian scheme using Galerkin’s technique indi- 
cate that the accuracy of the solution is affected by both Cr and Pe. Figure 10(a) shows that 
oscillation occurs as Pe is increased although the accuracy is improved when Cr is decreased 
as shown in Figure 10(b). If slight numerical dispersion can be tolerated ( S 5  per cent), then 
P e s 4 0 ,  and CrS0-5 can be used as criteria for acceptable accuracy. Since Pinder and 
Gray” found that the consistent mass matrix is superior to the lumped mass matrix, the 
consistent mass matrix is employed throughout this solution scheme. 

FEM4. The concept of the non-stationary mesh in the Eulerian scheme is also tested in a 
hypothetical situation in which the domain expands with time. As shown in Figure 1l(a), the 
edge of the domain on the right-hand-side moves at a speed 4 times greater than that of the 
field velocity, which in turn causes the discretization inside the domain to expand to 
accommodate the new domain. The left-hand-side of the domain remains stationary at all 

1 .o 

c/c, 

0.5 

24 30 36 

a b 

Figure 10. (a) Comparison of analytical and FEM3 concentration profiles with varying Pe 
for C, = 1 at t = 10. (b). Comparison of analytical and FEM3 concentration profiles with 

varying Cr for Pe = 40 at t = 30 
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Figure ll(a). Mesh layout for E M 4  

Figure ll(b). Concentration profiles from FEM4 for u = 1, A t  =0.25. 
D ~ 0 . 5  

times and the boundary condition at that point is c(0, t )  = co. An approximate analytical 
solution to this particular problem is given by equation (22). 

A comparison between the analytical and numerical solutions is made in Figure 1 l(b) from 
which it is evident that the numerical solution agrees quite well with the analytical solution. 
It should be noted that resolution of the mesh is impaired as the domain expands. This 
problem can be overcome by assigning adequate numbers of nodes for the maximum 
expected domain size. Since not all elements are moving at the same speed, Pe and Cr vary 
from element to element and results from FEM3 experiments may be employed as criteria. 
Because of the similarity between this scheme and FEM3, the consistent mass matrix is also 
employed. 

Two-dimensional models 

Comparison between MOC and FEMl.  Results from numerical simulation of unsteady 
flow in unconfined aquifers indicate that FDM is less efficient than E M .  Since MOC is 
dependent on the FDM solution, it is necessary to assess the performance of the MOC 
independently prior to its coupling with the FDM unsteady flow solution. This is accom- 
plished by first comparing it with FEM1, using a steady state flow field of the configuration 
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1 5x10-' 35 27 300 0.375 0.375 0.66 0.036 1 1 9 x  1.236X1W4 
2 1.72X10-2 0.30 0.16 6 0.325 0.491 1.75 0.073 1.22 0.693 1,8x10-3 1.009x10-3 

1. Assumed values for case 1 
2. Experimentally determined values for case 2 
3. L, a,, B are geometrically defined in Figure 1 
4. a , ,  a2, n,, n2 are used for calculation of DiJ-see Appendix for details. 

shown in Figure 1. Boundary conditions are given by equations (7), (8) and (9) with = 0. 
It is also assumed that there is no diffusion or dispersion from the bottom of the basin to the 
free surface so that the influent solute concentration at the free surface is equal to the 
concentration in the strip basin above. 

Taking advantage of symmetry, only one half is considered. Related physical properties 
are given in Table I, case 1. The coefficients of dispersion are chosen to be small so as to 
observe the performance of each model under the sharp front condition. 

In MOC, the recharge boundary is treated by assuming that each point represents a 
definite area (or volume) of fluid which is equal to (AxI2/(number of points in each square 
grid), Ax being the grid interval. In each time step a layer of invading fluid is deposited at the 
free surface underneath the recharge or disposal pit. The number of points in each layer is 
arranged so that the area (or volume) they represent is equal to LP0At/OT, Po being the 
infiltration rate. 

In FEMl,  the recharge boundary is treated by introducing new elements at the boundary. 
The frequency, at which the inclusion of the new elements takes place, varies depending on 
the proximity of the front to the boundary (every 1 , 2  or 3 time steps etc.). 

In order to maintain an identical velocity distribution pattern for all time steps, two sets of 
mesh are employed in FEM1: one for the flow equation and the other for the transport 
equation. In each time step spatially dependent velocities for each node in the transport 
mesh are calculated from the head distribution in the flow mesh. The models (MOC and 
FEM1) are run for several discretization conditions, the details of which are presented in 
Tables I1 and 111. 

Vertical concentration profiles at x = 10 m are plotted in Figure 12. All cases yield 
approximately the same position of c/c,=O*5 and in no case is numerical dispersion 
observed. Because concentration profiles from all FEM1 cases are almost indistinguishable 
only one curve is used to represent the results. 

Inspection of Figure 12 and Tables I1 and I11 shows that as Ax decreases (Pe decreases) 
solutions of MOC approach that of FEMl whose mesh can be economically graded to 

Table 11. Discretization details of MOC 
~ 

Total Number of Number of 
Ax, At  number of points per injected CPU" 

Case (m) (s) At  cell points/layer/Ax (s) 

1 10 7582 20 16 4 30.0 
2 5 3791 40 16 4 103.7 
3 2.5 1895.5 80 16 4 435.17 

* Performed on the DEC-system 10 at the James Cook University of North Queensland. 
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Table 111. Discretization details for FEMS 
~ 

Flow model Transport model 

At  CPU* Number Number Number Number 
Case of nodes of elements of nodes of elements (s) (s) 

1 36 48 24-48t 28-601- 7582 23.12 
2 102 160 . 95-1351- 144-208T 7582 82.95 
3 102 160 95-1351- 144-208T 3791 137.22 

* Performed on the DEC-system 10 at the James Cook University of North Queensland. 
t The first value is the initial number, the second value is the final number. 

accommodate steep gradient conditions. Improvement in accuracy and resolution in MOC 
can be done at the expense of computing cost as shown in Tables I1 and 111. 

Concentration contours from both schemes (case 3 ,  MOC and case 3 ,  FEM1) are shown in 
Figure 13. Good agreement is observed everywhere except in the vicinity of the free surface. 
One explanation for such an occurrence is that the approach to the solution of the flow 
equation in the vicinity of the free surface is different, thereby affecting the velocity 
magnitudes which are calculated from head values in this region. Owing to the fact that 
MOC tends to incur prohibitive computational cost, it was not compared with other schemes. 

Comparison of finite element models. Since each finite element scheme for the transport 
equation employs a different discretization, only one flow model is used. This is to provide 
identical patterns of velocity for each scheme so that each scheme is assessed on its own 
merit. The performance of the models is demonstrated through a problem shown in Figure 1 
for which data from sandbox experiments are a~ai1able . l~ Before the introduction of solute 
infiltration, the water table is horizontal and the water level is equal to that in the side drains. 
The boundary conditions are given by equations (71, (8) and (9). Following the argument 
given earlier (in comparison between MOC and FEM1) it is assumed that the influent solute 
concentration at the free surface is equal to that in the recharge basin above. Because of the 
symmetry of the problem, only one half need be considered. Physical properties of the 
aquifer are given in Table I, case 2. Temporal and spatial discretizations are presented in 
Table IV. In FEM1 it is assumed that the boundary condition at the downstream end does 
not significantly affect the conditions upstream so that only a small portion of the domain 
need be covered by a finite element mesh. The number of nodes and elements may therefore 

c/c, 

1.0  

0.5 

0.0 

x 3  (m) 

Figure 12. Comparison of concentration profiles from MOC and 
FEMlforCase 1 inTableI (x ,=10m,O<x,<3Om) 
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__.- MOC I 
Figure 13. Comparison of concentration contours between MOC case 

3 (Table 11) and FEMl Case 3 (Table 111) 

vary to cover different sizes of domain. In E M 3 ,  the number of nodes and efements is 
largest because the unsaturated zone above the water table must also be covered. 

It has been shown in the one-dimensional problem that the desired accuracy may be 
achieved by appropriate d~screti~ations, In this particular problem, if slight oscillation at the 
front is tolerated the discretizations employed should enable FEM3 and FEM4 to predict 
fairly accurately the position of the front. Conditions of the discretization employed are 
Pe s 4 @  (approx.), Cr s @ - 4  (approx.). 

The performance of the above four schemes is tabulated in Table IV in the form of 
CPU/timestep and CPU/timestep/element; the former is to indicate the overall performance 
of the scheme and the latter to determine the efficiency at elemental level. It is evident that 
FEM3 is the most efficient in terms of ~ P U / ~ ~ e s t e p / e l e m e n ~ .  This is because velocities and 

Table IV. Discretization details of FEM Schemes 

Flow model 

Number Number 
of nodes of elements 

Coarse mesh 144 210 
Fine mesh* 287 480 

~ y d ~ ~ ~ y ~ ~ m i c  dispersion model 

Scheme 
Number 
of nodes 

FEM 1 
FEM2 
FEM3 
FEM4 
FEM4" 

(fine mesh) 

30-120f 
180 
410 
20s 
287 

CPU/time step/ 
Number CPU/time step? element? 

of elements is) (Sl 

40-184f 4.39-20.21f 0.11 
280 17.02 0.061 
720 11.06 0.015 
320 8.03 0.025 
480 12-97 0-027 

For the flow model At  =:At, where At, for the ~ n v e ~ ~ v e " d i s p e r s i o n  model is: 

A t , = 1 . 0 1 A t , - , ~ 4 A t 0  and A t , = 2 4 s f o r  all schemes. 

i Performed on the DEC-system 10 at the James Cook University of North Queens- 
The same mesh for flow and hydrodynamic dispersion models. 

land. 
:i The first value is the intial number, the second value is the final number. 
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convective dispersion coefficients are assumed to be zero in the inactive unsaturated area. At 
the elemental level, FEMl appears to be the least efficient because of the necessity to 
occasionally rezone the overdistorted mesh and to relocate all nodes in every timestep. 

On an overall performance basis, FEMl does well initially when the number of nodes and 
elements is small and mesh rezoning has not taken place. The scheme decreases in efficiency 
when the number of elements increases and mesh deformation occurs. FEM4 appears to be 
the most economical overall because its CPU/timestep is lowest. As a check for convergence 
a case with refined discretization is included. Since FEBM4 is the most economical scheme, it is 
therefore selected for the test with finer discretization. In this case the same mesh is used for 
both flow and transport solutions. 

Breakthrough curves from all FEM schemes (including FEM4 with a fine mesh) are 
compared with the experimental data in Figure 14. It can be seen that calculated arrival 
times at various locations agree well with the experimental data. The correspondence 
between the data and calculation is only marginally improved when the finer discretization is 
employed for FEM4. 

c/c,  = 0.5 contours from various schemes are shown in Figure 15. Comparison of results 
from all schemes using identical flow models indicates that the contours are close to each 
other and the discrepancy between them is quite negligible considering the extent of the 
domain of interest. Furthermore, one-to-one correspondence cannot be ensured because of 
different discretizations employed and slight discrepancies in the convective magnitude are 
therefore unavoidable. Comparison between the contours of FEM4 (fine mesh) and the 
others reveals that at an early stage when the front is under the basin the former lags slightly 
behind the latter ones due to the differences in the flow patterns. As the front moves away 
from the basin they appear to be in approximately the same position. Generally, differences 
between results from fine and coarse discretizations are considered insignificant compared to 
the extent of the domain. 

Relative front widths for all schemes are also exhibited in Figure 15. FEM2 shows the 
largest width and FEMl the smallest. An inspection of Figure 14 reveals that when 
tPo/(aoOr) = 5.69 ( t  = 1033 s), FEMl still preserves the gradient of breakthrough curves 
suggesting that the front width predicted by FEMl at that time is approximately correct. 
Note that major smearing of breakthrough curves due to rezoning occurs after tPo/(aoOT) = 
6.2 ( t  = 1125 s). For this reason, one may therefore employ FEMl as a standard with which 
other schemes may be compared for the results shown in Figure 15. These results indicate 
that FEM2 suffers most from smearing whereas FEM3 and FEM4 experience approximately 
the same degree of smearing but less than that of FEM2. The front width of FEM4 (fine 
mesh) is smaller than that of FEM4 (coarse mesh) indicating that smearing can be attenuated 
by the use of a finer discretization; the values of CPU/time step in Table IV indicate the 
increased computational effort involved. 

Discussion 

Results from one-dimensional experiments show that numerical diffusion occurs with all 
schemes at large Pe and that Cr has a marked effect on accuracy in Eulerian FEM schemes 
but is less important in MOC and Lagrangian FEM. 

From the two-dimensional flow cases, MOC does not compare favourably with FEM 
schemes in terms of computational economy and the ease with which boundary conditions 
can be incorporated at the free surface. In addition the FDM flow equation solution is 
more expensive than its FEM counterparts6 and for these reasons, MOC is not considered 
competitive for the particular problem studied. 
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An examination of Figures 14 and 15 reveals that problems with FEM schemes include 
smearing of the front due to rezoning (FEMZ), smearing of the front due to interpolation 
truncation error (FEM2), and numerical dispersion and diffusion (FEM3 and EEM4). 

The selection of a scheme is generally dependent upon the type of problem to be solved. 
FEMl has been demonstrated to be efficient only in the early stages, when the number of 
nodes and elements is small, as the processing time per element is relatively high. Work 
carried out by Sat0 and T h ~ m p s o n ’ ~  also indicates that as the free surface approaches steady 
state the scheme is no longer economical. Furthermore, resolution in the solution is 
dependent upon rezoning schemes, In view of the above and other problems mentioned 
earlier, this scheme is only recommended for linear problems in which the flow domain is 
geometrically simple, the flow pattern uncomplicated, and the area needed to be covered by 
the transport model is small compared to that required for the flow model. 

Adey and Brebbia” indicated that an FEM scheme similar to FEM2 reduced the storage 
requirement by one half and CPU time by two thirds compared with an iterative Eulerian 
scheme. Results from this study indicate that E M 2  is less efficient than the weighted 
time-stepping Eulerian schemes and furthermore, accuracy is limited to small values of Pe. In 
other words, numerical dispersion is eliminated at the expense of smearing of the front. 
Numerical dispersion and diffusion in FEM3 and FEM4 may be alleviated using upwind 
weighting functions.’2 At high values of Pe such a reduction of the numerical oscillation 
leads to smearing at the front.” 

Based on considerations of computational efficiency and accuracy for long-term contamin- 
ant transport problems the Eulerian approaches (FEM3, FEM4) appear to be better than 
their pseudo-Lagrangian counterparts (FEM1, EEM2). 

The results in Table IV for CPU time per time step (since the time step is identical in all 
cases) show that FEM4 is the most economical at longer times. It is also convenient to apply 
since only mesh is required. 

CONCLUSIONS 

Five numerical schemes (one MOC and four FEM) for solving the problem of solute 
transport in unsteady flow in unconfined aquifers are compared using experiments on one 
and two-dimensional flow cases. The results for one-dimensional flow indicate that the 
accuracy is strongly dependent upon discretization especially at high mesh Peclet numbers. 
For two-dimensional cases the finite element schemes are found to be more computationally 
economical than MOC. The finite element scheme that is considered most efficient overall is 
the one with Eulerian formulation which allows the elements to expand or contract to 
accommodate the non-stationary saturated domain without any intermediate interpolation. 

APPENDIX. CALCULATION OF DISPERSION COEFFICIENTS 

The tensor DIi is calculated from the formula 

uiuj 
Dij = D, aii + (D, - D,) - 

U 2  

where D, is the longitudinal coefficient of dispersion, D, the lateral coefficient of dispersion, 
and U the magnitude of local pore velocity. 
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DL and DT are estimated byz1 

123 

DL = va,Renl 
DT = va2Ren2 
Re = Reynolds number = d,, U/v 

where v is the kinematic viscosity of water (1,011 x m2/s in this study), d5, the 50 per 
cent finer diameter of the porous medium, at and az the experimentally determined 
dispersivity constants, n,  and n2 experimentally determined exponents. 
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